World

Electronic skin ‘capable of feeling pain’ built by Brit scientists


Electronic skin ‘capable of feeling pain’ built by Brit scientists #Electronic #skin #capable #feeling #pain #built #Brit #scientists Welcome to TmZ Blog, here is the new story we have for you today:

SEE FERRARI COPY - INCLUDES EMBARGO UNTIL 7PM ON 01/06/22 FERRARI PRESS AGENCY...Scientists are set to create touch-sensitive robots after producing artificial skin which is capable of feeling 'pain'. A team of engineers at the University of Glasgow used a processing system based on synaptic transistors to create 'smart skin' which reacts to external stimuli.?OPS: Ravinder Dahiya who led the study. Credit: University of Glasgow
Ravinder Dahiya who led the study, alongside a robot hand fitted with the electronic skin. (Credit: University of Glasgow)

British researchers have created an electronic skin capable of feeling pain.

Click Here to Get Paid For Reading News, Liking, Posting and Commenting.


Get Paid For Reading News

They reckon it could help create a new generation of smart robots with human-like sensitivity and the ability to learn from painful mistakes.

A team of engineers from the University of Glasgow developed the artificial skin with a new type of processing system based on synaptic transistors, which mimics the brains neural pathways in order to learn.

A robot hand which uses the smart skin shows a remarkable ability to learn to react to external stimuli.

The researchers describe how they built their prototype computational electronic-skin (e-skin), and how it improves on the current state of the art in touch-sensitive robotics.

Scientists have been working for decades to build artificial skin with touch sensitivity.

One widely-explored method is spreading an array of contact or pressure sensors across the electronic skins surface to allow it detect when it comes into contact with an object.

SEE FERRARI COPY - INCLUDES EMBARGO UNTIL 7PM ON 01/06/22 FERRARI PRESS AGENCY...Scientists are set to create touch-sensitive robots after producing artificial skin which is capable of feeling 'pain'. A team of engineers at the University of Glasgow used a processing system based on synaptic transistors to create 'smart skin' which reacts to external stimuli.?OPS: A diagram of the e-skin prototype showing how it mimics neural pathways in the human body. Credit: University of Glasgow
Touch-sensitive robots could be produced using the special skin (Credit: University of Glasgow)

Data from the sensors is then sent to a computer to be processed and interpreted.

The sensors typically produce a large volume of data which can take time to be properly processed and responded to, introducing delays which could reduce the skins potential effectiveness in real-world tasks.

The Glasgow teams new form of electronic skin draws inspiration from how the human peripheral nervous system interprets signals from skin in order to eliminate latency and power consumption.

As soon as human skin receives an input, the peripheral nervous system begins processing it at the point of contact, reducing it to only the vital information before it is sent to the brain.

SEE FERRARI COPY - INCLUDES EMBARGO UNTIL 7PM ON 01/06/22 FERRARI PRESS AGENCY...Scientists are set to create touch-sensitive robots after producing artificial skin which is capable of feeling 'pain'. A team of engineers at the University of Glasgow used a processing system based on synaptic transistors to create 'smart skin' which reacts to external stimuli.?OPS: A synaptic device being connected in the system. Credit: University of Glasgow
The skin draws inspiration from how the human peripheral nervous system works (Credit: University of Glasgow)

That reduction of sensory data allows efficient use of communication channels needed to send the data to the brain, which then responds almost immediately for the body to react appropriately.

To build an electronic skin capable of a computationally efficient, synapse-like response, the researchers printed a grid of 168 synaptic transistors made from zinc-oxide nanowires directly onto the surface of a flexible plastic surface.

Then, they connected the synaptic transistor with the skin sensor present over the palm of a fully-articulated, human-shaped robot hand.

When the sensor is touched, it registers a change in its electrical resistance a small change corresponds to a light touch, and harder touch creates a larger change in resistance.

SEE FERRARI COPY - INCLUDES EMBARGO UNTIL 7PM ON 01/06/22 FERRARI PRESS AGENCY...Scientists are set to create touch-sensitive robots after producing artificial skin which is capable of feeling 'pain'. A team of engineers at the University of Glasgow used a processing system based on synaptic transistors to create 'smart skin' which reacts to external stimuli.?OPS: A robotic hand using the e-skin. Credit: University of Glasgow
The robot hand fitted with the electronic skin (Credit: University of Glasgow)

This input is designed to mimic the way sensory neurons work in the human body.

In earlier generations of electronic skin, that input data would be sent to a computer to be processed. Instead, a circuit built into the skin acts as an artificial synapse, reducing the input down into a simple spike of voltage whose frequency varies according to the level of pressure applied to the skin, speeding up the process of reaction.

The team used the varying output of that voltage spike to teach the skin appropriate responses to simulated pain, which would trigger the robot hand to react.

By setting a threshold of input voltage to cause a reaction, the team could make the robot hand recoil from a sharp jab in the centre of its palm.

In other words, it learned to move away from a source of simulated discomfort through a process of onboard information processing that mimics how the human nervous system works.

The development of the electronic skin is the latest breakthrough in flexible, stretchable printed surfaces from the University of Glasgows Bendable Electronics and Sensing Technologies (BEST) Group, led by Professor Ravinder Dahiya.

Professor Dahiya, of the Universitys James Watt School of Engineering, said: We all learn early on in our lives to respond appropriately to unexpected stimuli like pain in order to prevent us from hurting ourselves again.

Of course, the development of this new form of electronic skin didnt really involve inflicting pain as we know it its simply a shorthand way to explain the process of learning from external stimulus.

What weve been able to create through this process is an electronic skin capable of distributed learning at the hardware level, which doesnt need to send messages back and forth to a central processor before taking action.

Instead, it greatly accelerates the process of responding to touch by cutting down the amount of computation required.

We believe that this is a real step forward in our work towards creating large-scale neuromorphic printed electronic skin capable of responding appropriately to stimuli.

SEE FERRARI COPY - INCLUDES EMBARGO UNTIL 7PM ON 01/06/22 FERRARI PRESS AGENCY...Scientists are set to create touch-sensitive robots after producing artificial skin which is capable of feeling 'pain'. A team of engineers at the University of Glasgow used a processing system based on synaptic transistors to create 'smart skin' which reacts to external stimuli.?OPS: A force-sensing resistor (FSR) is used as an artificial receptor. Credit: University of Glasgow
In the future, this research could be the basis for a more advanced electronic skin which enables robots capable of exploring and interacting with the world in new ways. (Credit: University of Glasgow)

Fengyuan Liu, a member of the BEST group and a co-author of the paper, added: In the future, this research could be the basis for a more advanced electronic skin which enables robots capable of exploring and interacting with the world in new ways, or building prosthetic limbs which are capable of near-human levels of touch sensitivity.

The teams paper, titled Printed Synaptic Transistors based Electronic Skin for Robots to Feel and Learn, is published in Science Robotics.

The research was supported by funding from the Engineering and Physical Sciences Research Council (EPSRC).

MORE : Robot artist paints a portrait of the Queen for the Platinum Jubilee

MORE : This tiny robot crab, smaller than a flea, could go inside you for medical treatments

1 2Next page

Related Articles

Back to top button

Get a Chance to WIN $500 Giveaways Every Month.

X
exit
MyNaBO

AdBlocker Detected

Please disabled your AdBlocker to enable you use our website seamlessly